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Abstract—The transient heat- and mass-transfer behavior of various rotating-disk-revolving-fluid
combinations has been investigated. The analysis assumes steady flow and instantaneous application
of a temperature or composition change at the disk at zero time. The approach of the dimensionless
heat- or mass-transfer parameters, the Sherwood or Nusselt numbers, to their steady-state values has
been investigated. The numerical computations for the pure rotating-disk case utilized both the true
velocity profile and some limiting forms applicable to restricted regions of the Schmidt or Prandtl
number and time. The results indicate that, for practical purposes, steady-state transfer is essentially
instantaneously attained upon application of the new boundary condition. For Sc — 0, the effect of
interfacial velocity on the transient response is small.
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NOMENCLATURE

constant describing the linear
portion of the axial velocity
profile,

ratio of the steady-state Sher-
wood number to that for ¢, = 0,
equation (29);

dimensionless velocity para-
meter for flat-plate flow;
defined by equation (28);
dimensionless axial velocity,
equation (3);

Nusselt number;

Prandtl number;

ratio of the mass flux of the
second component to that of
the diffusing species, at the
solid surface;

dummy variable of integration;
Schmidt number;

Sherwood number;
temperature, degC;
dimensionless time variables,
equations (8), (11), (15) and (22);
time, s;

main stream velocity in flat-
plate flow, cmy/s;

mass fraction of diffusing solute;
axial velocity, cm/s;

.

X,
X, X3, X4g,

z,
Greek symbols

distance along a flat plate, cm;
dimensionless distance variable,
equations (9), (13) and (20);
axial distance from disk, cm.

coefficient of parabolic term of
power series expansion of H(¢)
about ¢ = 0 equal to 0-5102;
interfacial velocity parameter;
dimensionless mass fraction,
w—w)(W,— WwW,) or di-
mensionless temperature,
(T — T )Ty — T,);
dimensionless axial
equation (2);

angular velocity, rad/s;
kinematic viscosity of fluid,
cm?/s.

distance,

at the disk, £ =0;

at large distance from the disk,
§— 05

steady-state value, — 0;

for ¢, = 0.

INTRODUCTION

THE nature of the steady flows produced by a
disk rotating in an infinite body of fluid revolving
at a different angular velocity from the disk
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has recently been the subject of numerous inves-
tigations [1-3]. The heat-transfer problem
associated with the pure rotating-disk system
(stationary fluid) has been solved for all Prandtl
numbers by Millsaps and Pohlhausen {4], and
Sparrow and Gregg [5]. The latter authors have
also investigated, by a perturbation method, the
flow about an unsteadily rotating disk [6].

The purpose of this work is to present solu-
tions of the unsteady-state energy or diffusion
equations for the combined rotating-disk—
revolving-fluid system. The fluid is assumed to
have attained a steady flow situation and, at
zero time, a unit change in temperature or com-
position is applied to the disk.

Cess and Sparrow [7] have investigated the
rotating-disk system by means of an approxi-
mate solution to the energy equation. Although
their technique gives an accurate closed-form
expression for the transient behavior of the
system, it is limited to Prandtl numbers betwgen
~1 and 100 and requires numerical evaluation
of two integrals for each Prandtl number. In
this paper, the regions of very high and low
Prandt] numbers will be investigated, and several
explicit forms of the transient solutions will be
examined. The difference between the heat-
and mass-transfer processes will also be con-
sidered.

HEAT TRANSFER AND ZERO-DRIVING-
FORCE MASS TRANSFER

For heat-transfer situations in which the

viscous dissipation term is negligible and for

mass transfer in which the mass flux is small

enough to neglect the interfacial velocity term,

the constant-property, unsteady-state energy or
species conservation equation takes the form
20 cb o6

e Pr H() it Pr gty

This relation is written for heat transfer, but

replacement of the Prandtl number by the

Schmidt number converts it to the diffusion

equation. The dimensionless velocity and axial

distance are defined by

£ \/ (“’0) @

H(&) = w/v/(vay). 3

n
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The boundary conditions are

[, 0] =0: [0, (wyt)] =1 4)
0[0. (wqt)] = 0.

Solutions of equation (1), expressed as the
variation of the gradient at the disk with time,
have been obtained. Since heat- or mass-transfer
coeflicients are proportional to the gradient at
the disk, the dimensionless group involving
these coefficients, i.e. the Nusselt and Sherwood
numbers, will be utilized

N '6‘9‘) s
== ze) . )
The right-hand side of equation (5) refers either
to the Nusselt or Sherwood number but, for
consistency, the Nusselt number will be em-
ployed. The results will be presented in the form
of the ratio of the Nusselt number at a dimen-
sionless time wgyf to that at steady state.

When the fluid above the disk is itself in
rotational motion, one boundary condition on
the equations of motion is altered, and new
velocity profiles must be computed for each
value of the ratio wy/ws. If the fluid at infinity
is rotating at a greater speed than the disk, it is
convenient to base the dimensionless transfor-
mations upon the fluid rotation rate rather than
that of the disk. In this case, w, in equations
(1-3) is replaced by ws and the dimensionless
time is wwt. For a disk rotating in a stationary
fluid, wy/ww = oc; and for a fluid revolving
over a stationary disk, wy/we = 0. Axial
velocity profiles for these limiting situations
have been tabulated by Schlichting [8]. while
those for intermediate values of the parameter
wolws are available from the work of Rogers
and Lance [3].7

STEADY-STATE SOLUTION

With the right-hand side of equation (1)
equal to zero, and the boundary conditions
6(0) == 1, f(oc) =0, the solution for steady-
state transfer can be written as

"t The profiles need not be tabulated as H(¢) vs. ¢.
Five constants characteristic of the flow suffice to generate
an asymptotic power series from ¢ = 0 to a chosen

match point, beyond which H(¢) is represented by an
exponential series [1-3].
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Nugs = [[* exp {Pr [ H(s)ds} d¢]L.  (6)

Sparrow and Gregg [5] have obtained exact
numerical solutions of equation (6) for we =0
and a large range of Prandtl (or Schmidt)
numbers. A significant characteristic of rotating-
disk-revolving-fluid flows is the approach of
H(&) to a constant value at large distances from
the disk. The form of equation (6) requires that
H{w) < 0; otherwise, the integral increases
without bound. Since the sign of H(o0) changes
from negative to positive as wyfw, decreases
below unity, we can conclude that the steady-
state solution is zero when the fluid is rotating
more rapidly than the disk.

In this respect the system is similar to con-
duction into a motionless medium, for which a
steady state of zero is approached. When the
fluid motion is directed away from the source,
mass or energy is convected further and further
into the medium as time progresses; this con-
tinually reduces the magnitude of the gradient
(and hence the flux) at the surface towards
zero. When the fluid moves toward the source,
the continuous introduction of fresh material
into the region close to the surface permits a
potential gradient at the source surface to be
maintained; hence a non-zero flux will persist
after the transient period has died away.

UNSTEADY-STATE SOLUTIONS

Numerical solutions of equation (1) have
been obtained by the method of finite differences,
utilizing tabulated values or the equivalent
series representations of the axial velocity
profile.

For the rotating disk (we = 0), certain limi-
ting cases of time and Pr permit simplifications
in equation (1) which allow either analytical
solution or a transformation which removes the
explicit dependence on the Schmidt number.

Case I—Very small times, all Pr

After the temperature or composition of the
disk has been suddenly altered, there will follow
a period of time during which the depth of
penetration into the fluid is so small that the
axial velocity can be considered zero. The
heat- or mass-transfer rate will follow the time
dependence characteristic of conduction into a
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stagnant medium. With H{(£)~ 0, the solution
of equation (1) can be written as

Nu 1 1
= e 7
NuSs NuSs J(WTI) ( )
where
- wel
T, = 5 ®)

Nuss is computed by equation (6) using the
actual velocity profile.

Case II—Large times, small Pr (<0-1)

In this case, the steady-state diffusion or
thermal boundary layer is considerably greater
than the hydrodynamic boundary layer [5].
For times sufficiently large such that the tem-
perature or concentration profile is reasonably
close to its steady-state value,

H(¢) ~ H{w) = —0-886,

and with
Xy = —Pr H(w0)¢ )
equation (1) becomes
a8 o8 @l
et i T (10)
where
T, = Pr[H(w0)Pw,t. (1

The solution of equation (10) is [9]

Nu 1
N = vz € T F ML et GyT] (1)
Case II1I—Large times, Pr ~ 1

For these Prandtl numbers, a significant
portion of the concentration or temperature
change falls in the region 0 < ¢ <2, within
which H(¢) is approximately linear with axial
distance (see Fig. 2 of [5]). Taking H(¢) ~ — B¢,
and making the dimensionless transformation

Pr B
Xy = ¢ ,\/("2“‘), (13)
equation (1) can be written as
520 of cf
: (14)

o T ek, T e,
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where
Ty = $Bw,t. (15)
The solution of equation (14), subject to

boundary conditions equivalent to equation (4),
is

Nu

Nugs o

To estimate the reliability of the linear-

velocity assumption, the steady-state solution
of equation (14) was first obtained as

( dB) _ 2
l dX3 0 - ’\/77‘
Using equation (13)

o I

with B approximately equal to 0-25, equation
(18) becomest

[1 — e-eTs]-2,

(16)

a7

NuS,g — 0'40 \/Pr. (19)

A comparison of the exact computation [5] and
that predicted by equation (19) shows the latter
to be 1 per cent high at Pr = 1 and 11 per cent
high at Pr = 10. Although equation (19) is not
useful as a method of accurately predicting
Nugs, this agreement indicates that the linear-
velocity profile is a reasonable assumption for
Pr ~ 1. However, equation (16) shows that
since T} is not a function of the Prandtl number,
neither is the ratio Nu/Nuss.

Case 1V—All times, high Pr (>100)

For large Prandtl numbers, the thermal-
boundary layer is always in the region in which
H(§) ~ — af?, where a = — 1H"(0) [5]. With
this velocity profile and the transformation

aPr\1/3
xg = (—3—) ¢ 20)
equation (1) becomes
226 o6
g T e, T, 1)

t The étraight line has been drawn through the origin
of Fig. 2, Ref. [5].
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where

Ty = (/3127 Pr13 g, (22)

Numerical solution of equation (21) permits
prediction of the time-dependent heat- or mass-
transfer behavior for all Pr > 100.

Solutions of this type are more useful in mass
rather than heat transfer, since the restriction
Sc¢ > 100 includes practically all binary liquids.
It should be noted that the technique of Cess
and Sparrow [7] is not applicable to large
Schmidt or Prandtl numbers. They have utilized
a modified Laplace transform of equation (1)
and obtained solutions for large and small
values of the transform variable. The series
approximation for large times (small values of
the transform variable) retains only two terms,
and the success of this method for Prandtl
numbers between 1 and 100 is due to the low
ratio of the coefficients of the second and first
terms—see equation (13) and Table 1 of [7].
The reason for the failure at low Prandtl
numbers is the large value of this ratio. It can
be shown that at large Prandtl numbers the
ratio is proportional to the Prandtl number;
hence the method is inapplicable in this region
as well. Application of their technique to equa-
tion (21) yields an imaginary value of one of the
coefficients (a; in their nomenclature).

Plots of Nu/Nuss vs. time for Cases I, Il and IV
will be separated according to Prandtl number,
as can be seen by the appearance of this para-
meter in the dimensionless times defined by
equations (8), (11) and (22). Equation (15)
indicates that only for Case III will the Sher-
wood or Nusselt ratio be independent of Sc¢ or
Pr.

RESULTS
Rotating-disk flow (o, = 0)

The solid lines of Figs. 1 and 2 show the
approach to steady state transfer from a
rotating disk. The curves for Pr = 0-01, 01, 1,
10 and 100 were computed using the actual
axial velocity profile [2, 8]; for Pr = 1000,
the parabolic approximation to the velocity
profile was used, i.e. this curve represents a
solution of equation (21) with T, converted to
w,t by equation (22).

The curves of Fig. 1 shows that for low Prandtl
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F1G. 1. Transient heat transfer from a rotating disk for Pr = 0-1 and 0-01.
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FiG. 2. Transient heat transfer from a rotating disk for
Pr =1, 10, 100 and 1000.

numbers the constant velocity model [equation
(12)] is an excellent approximation of the actual
transient behavior for all but very small times.
In the region where equation (12) begins to
diverge from the true curve, the conduction
model takes its place as a satisfactory approxi-
mation. With appropriate matching, equations

(7) and (12) reproduce the numerical solution to
within +4 per cent at all times.

The numerical solutions for Pr =1, 10 and
100 (Fig. 2) are in excellent agreement with the
closed-form solution of Cess and Sparrow [7].
The conduction model follows the true curve
until quite close to steady state, or for Nu/Nuss
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between 2 and 3. At wyf > 2, the curves for
Pr =1 and 10 coincide, indicating that the
restrictions of Case III are fulfilled. The solid
curve for Pr = 1 is predicted by equations (15)
and (16) to within 0-5 per cent.

For practical purposes, a more significant
measure of transient behavior is the time re-
quired to reach a certain percentage of steady
state. Fig. 3 shows the wyt values requised for
Nu/Nugs to reach 1-5 and 1-05 as functions of Pr.
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Fic. 3. Time required for varjous fractional approaches
to steady-state, rotating disk.

The asymptotic lines for high and low Prandtl
numbers have been obtained from equation (12)
and the solution of equation (21). The flat
minima between Prandtl numbers of 1 and 10
indicate the qualitative validity of Case 11T, which
predicts that the time required to approach a
given percentage of steady state should be
independent of Prandtl number as long as the
velocity profile in the region where the greatest
part of the temperature or concentration change
occurs is effectively linear. The true minimum
is in the neighborhood of Pr = 3; the transient
curve for this Prandtl number falls slightly
below the Pr = 1 curve of Fig. 2 at wyt > 2.

This peculiar behavior of the transient
response time has been noted by Cess and
Sparrow [7] and is due to the particular form of
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the axial-velocity distribution characteristic of
rotating-disk flows. The minimum can be thought
of as the result of two competing effects: Large
thermal or mass diffusivities {or low S¢ or Pr)
tend to give a quick approach to steady state;
strong fluid motion in a direction opposite to the
heat or mass flux tends to restrict the speed of
approach to steady state. This latter effect
results from the fact that heat or mass diffuse
relative to the mass average velocity of the fluid.
Just as a fish moves more slowly upstream
against a swift current, the rate of heat or mass
transport as seen by a stationary observer is
proportional to the difference between the
diffusional velocity (which is a function of the
diffusivity-gradient product) and the (negative)
convective velocity. At low Prandtl numbers,
the thermal boundary layer at steady state
extends quite deeply into the region far from the
disk where the axial inflow is strongest. This
convective restriction to rapid attainment of
steady state more than overcomes the high
diffusivity characteristic of low-Prandti-number
fluids, so that the net result is a sluggish approach
to steady state. At high Prandtl numbers. the
situation is just reversed ; the velocity experienced
by the diffusing heat or mass is quite small since
the process occurs in a region close to the solid
surface. However, the very low diffusivity
predominates and the approach to steady state
is slow. For intermediate Prandtl numbers. the
diffusivities are sufficiently large and the hydro-
dynamic inflow sufficiently small in the thermal
or diffusion boundary layer such that the rate
of approach to steady state is more rapid than
for the other two cases.

The minima of Fig. 3 should be observed for
any flow system in which the axial velocity
[or more precisely, the equivalent of H(£) in
equation (1)] approaches a constant negative
value at large distances from the solid surface.
This conditions insures that as Pr— 0, equation
(12) will be valid, and the response time will
decrease as Pr—1, as the left-hand asymptotes
of Fig. 3 indicate. As Pr-> o0, the velocity
parallel to the solid surface in the thermal or
diffusion boundary layer will eventually become
linear in normal distance [this condition gives
rise to the parabolic form of the coefficient of
€B/éx, in equation (21)] [10]. When this occurs,
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the right-hand asymptote of Fig. 3 will describe
the transient behavior, and the time of the
approach to steady state will increase as the cube
root of the Prandtl number. What lies between,
then, must be a minimum.

As an example of a system which contains no
minimum in response curves similar to Fig. 3,
consider the transient response of heat transfer
from a flat plate to a step change in plate tem-
perature. The time-dependent energy equation
is given by equation (1) with H(¢) replaced
by — 3 f(¢) and wy replaced by #/(x/U). The
derivative of the function f(£) represents the
ratio of the parallel velocity component to the
main stream velocity (U), and ¢ is the dimension-
less distance commonly employed in flat-plate
analysis.t For low Prandtl numbers, the thermal
boundary layer is much larger than the flow
boundary layer, and f(¢) can be replaced by its
asymptotic form for large distances. Thus
f(§) = £+ K, where K is a constant. If x; is
defined as 3+/(Pr) (£ + K) and T, as #/4(x/U),
the flat-plate energy equation reduces to equa-
tion (14). The steady-state solution is:

. Pr
lim Nuss = —)
Pr—0 ™

which is too high by 3 per cent at Pr = 0:001,

8 per cent at Pr =001 and 22 per cent at

Pr = 0-1 [11]. The unsteady-state solution is:
‘N

lim ( ”) = {1 — exp [— /(x/U)} 12 (24)
Nugs

Pr—0

At large Schmidt numbers, f(€)— 2082
where « = 0-083 [10]. The energy equation thus
reduces to equation (21).

Knowledge of these two limiting cases permits
construction of asymptotic response curves
similar to those of Fig. 3; these are shown on
Fig. 4 for the flat-plate geometry. Rather than
passing through a minimum, the transient
curves approach a constant value as Pr—0,
which is obtainable from equation (24). Since
the range of validity of the unsteady-state
asymptotic forms roughly corresponds to the
applicability of their steady-state counterparts,
the right-hand asymptotes of Fig. 4 should be
fairly reliable down to Pr ~ 1, while the low-

(23)

+ For the flat plate, ¢ = y[U/vx]1/2, where y is distance
normal to the surface.
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FiG. 4. Time required for various fractional approaches
to steady-state, flat plate.

Prandtl-number form is probably in consider-
able error for Pr > 0-01.

Rotating disk—revolving fluid

Solutions of the energy equation for the case
of a non-zero rotational velocity of the fluid
above the disk were obtained by numerical
solution of equation (1) and the appropriate
tabulated values of H(¢) for each wy/we.

Figure 5 shows the transient behavior of the
Nusselt number for Pr = 1 and wy/wew = 5-54
and 2-91. In the former case, the curve is identical
with that for a pure rotating disk, which indi-
cates that the ratio 5-54 is essentially infinite as
far as the wvelocity profiles are concerned.
Fig. 6 presents the time-dependent behavior of
systems in which the bulk fluid is rotating more
rapidly than the disk. For these systems, as
indicated above, the Nusselt number approaches
zero at large times. For wy/we = 0032 (which
closely represents the rotational motion of a
large body of fluid over a stationary surface)
and a fluid rotational rate of 10 s—1, the Nusselt
number is 0-03 after 4 s. By comparison, the
Nusselt number for a disk rotating at 10 s~1in a
stationary fluid is 0-41 after {s.

Figures 5 and 6 indicate that, as wy/wwx
approaches unity, the transient response be-
comes slower. This is due to the increasing size
of the hydrodynamic and thermal boundary
layers as the state of solid rotation is approached.
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At wy/ws = 1, there is no gross fluid motion,
and the system is one of pure conduction or
diffusion, for which the “boundary layers” are
infinite in extent. Any convective contribution
to energy or material transport, whether it be
flow toward the disk (wg/we > 1) or outflow
(wofwes << 1), results in a more rapid response
than that of pure conduction or diffusion.
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FiG. 6. Transient heat transfer behavior of rotating-
disk-revolving-fluid combination, we/w, <1, Pr=1.

Unsteady-state mass transfer at high rates

The preceding development of the transient
behavior of the rotating-disk system is appli-
cable only to those mass-transfer situations in
which the driving force or the mass flux is small.
If this is not so, the axial velocity at the disk
surface generated by the mass-transfer process
cannot be neglected, and its effect on boundary
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conditions of the equations of motion must be
considered. An exact solution represents a
formidable problem, for not only are three
non-linear, time-dependent, hydrodynamic equa-
tions coupled to equation (1), but the axial
velocity boundary condition at the disk, H(0), is
non-zero and varies with time as well. In order
to estimate the effect of the interfacial velocity
upon the transient behavior which has been
developed for heat transfer and zero-driving-
force mass transfer, two limiting cases will be
considered: (1) a short-time approximation
equivalent to the pure conduction model con-
sidered previously and valid for all Schmidt
numbers, and (2) a long-time approximation for
high Schmidt numbers.

Immediately following a step change in
concentration at the disk, the mass-transfer
process resembles that of pure diffusion into a
motionless medium. The only convective motion
in the fluid is that resulting from the movement
of the diffusing species itself and can be related
to the gradient at the disk by [10]:

€ (00

Sc (05)0

WO - Woc

[1/(1 + 8] — W,
and S represents the ratio of the mass fluxes of
the second component to that of the diffusing
species. If the second component is not trans-
ferred across the disk surface, S =0, and
equation (26) represents the ‘“‘stagnant B”
condition commonly encountered in mass-
transfer analyses. Equations (25) and (26)
arise directly from the definition of a Maxwell-
Stephan or Chapman-Cowling type diffusion
coefficient [10]. In the following analysis, the
properties of the mixture (e.g. viscosity, density
and diffusivity) will be assumed independent of
composition. The effect of variable properties
on the steady-state transfer is not large, at least
for high Schmidt number systems [10].

With the hydrodynamic velocity approximated
by equation (25) for short times, equation (1)
becomes

020 06\ 00 af
FE (8?)05;" )

H(0) = (25)
where
(26)

€

27
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Following the development of Bird et al. [12],
the solution to equation (27) can be written as

_exp {— &SKTy)
g(ev) = Sh '\/(TrTl) - 1 -+ Crf {EvSh'\/T‘l}

where Sh represents the gradient at the disk
[the right-hand side of equation (5)] and T is
given by equation (8).f As -0, g(e)
approaches unity, and equation (28) reduces to
equation (7). The solution of equation (28) is
presented on Fig. 7 as the g(e) vs. e curve.
Equation (28) indicates that the effect of inter-
facial velocity on the short-time transient
behavior is simply a displacement of the con-
duction-type curves by the factor g(ey). How-
ever, in order to express the results as the ratio

-8
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FiG. 7. The effect of interfacial velocity on the diffusion
model for transient mass transfer.

Sh/Shgs, the effect of ¢, on the steady-state
Sherwood number must also be considered.
This effect has been investigated elsewhere [13],
and the results can be represented by

T For the following dicusssion, Nu and Pr in equations
(5-8) are replaced by Sk and Sc.

833

Sh

sig =/ (=) (29)
where Sh* denotes the steady-state Sherwood
number in the absence of interfacial velocity
and is equal to the steady-state Nusselt number
which has been used in the preceding section.
The function f () can be obtained from a cross
plot of the curves of the figure in [13]. In
general, f(e) is a function of Schmidt number,
but this dependency ceases for Sc > 10. Com-
bining equations (28) and (29), the exact mass-
transfer analog of equation (7) can be written as

O

Shss — | F(er)| SHE

This relation is applicable to all Schmidt
numbers, and its range of validity will probably
be close to that of equation (7), ie., until
Sh{Shss is between 2 and 3. Except for large
Schmidt numbers, f(e;) must be evaluated at
the particular Schmidt number in question. For
all Schmidt numbers, however, the ratio
g(ey)] f (&) differs surprisingly little from unity.
For Sc = 1, for example, it is 1-13 at ¢, = —0-6
and 093 at ¢, = -+0-6.1 For Sc¢ > 10, the effect
is even less pronounced. The function f(e)
and the ratio g(e)/ f(ey) are shown in Fig, 7 for
S¢ > 10. The ratio g(ey)/ f(es) varies from
1:07 at €y = —0-6 t0 0:96 for ¢, = 0-6.

For large Schmidt numbers, it is convenient
to recast equation (30) into the time variable
T, of equation (22). With the parabolic velocity
profile assumption, Sh* can be obtained
directly from equation (6) as {(aS¢/3)Y3/I'(4/3)
and equation {30) written as

Sh F’(z;/s)} [g(ev)] 1

She v ) Uil v O

Here I'(4/3) denotes the gamma-function of 4/3.

At large Schmidt numbers, the steady-state
Sherwood number can be accurately approxi-
mated by use of a velocity profile which is the
sum of two contributions: the mass transfer
induced interfacial velocity and the parabolic

} For a stagnant second component (§=0),
e = —O6 represents a solute whose mass fraction is
06 in the bulk and zero at the disk. ¢, = 0-6 charac-
terizes a solute with a mass fraction of 0-375 at the disk
and zero in the bulk.
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term representing the velocity distribution with-
in the diffusion boundary layer in the no-mass-
transfer system [13]. Thus, as Sc - o,

H(¢) ~ H(0) — ag? (32)

This approximation is satisfactory for steady-
state transfer because the interfacial velocity
becomes increasingly smaller as the Schmidt
number increases.t In the limit as Sc¢— o,
the radial shear stress at the disk [which is
proportional to « in equation (32)] is no longer
affected by the mass-transfer process, and the
velocity distribution is simply a translation of
the no-mass-transfer profile by an amount H(0).

In the transient case, however, two additional
limitations arise:

(1) Equation (32) applies to a steady-state
situation. In the transient case, the coefficient «
would in general be a function of time, and
higher-order terms may be significant. However,
on physical grounds it can be argued that if the
boundary condition H(0) is a slowly varying
function of time, the velocity distribution can
be assumed to pass through a series of instan-
taneous quasi-steady states, each represented
by equation (32). In this case, « would retain
its no-mass-transfer value of 0-51 and the entire
time variation of the axial velocity would be
contained in the H(0) term. There is some
Justification for the assumption from the study
of Sparrow and Gregg [6], which was concerned
with the deviation of the instantaneous torque
on a rotating disk during start-up from its
quasi-steady-state value. Deviations were ex~
pressed as a power series involving the time
rate of change of the angular speed of the disk
and its derivative. The slower the rate of change
of disk speed, the better is the quasi-steady-
state assumption. In an illustrative example, they
showed that, for a reasonable approach of
the rotational speed to its steady-state value, the
quasi-steady approximation was valid by the
time the disk had attained but 10 per cent of its
steady-state rotational rate. The situation here
is different in that the axial velocity boundary
condition, rather than the tangential component,
is time dependent. In addition, the time varia-

Tt At Se = 1000 and e = 06, H(0) ~ 0-0033, com-
pared to H(oo) == —0-886.
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tion of H(0) is not a priori specifiable, for it is
embedded in the transient diffusion equation.
(2) Since H(0) is determined by the magnitude
of the composition gradient at the disk surface,
equation (32) would apply only when the Sher-
wood number is close to its steady-state value.
Otherwise, the interfacial velocity will be large
enough to affect the shear stress at the disk.
and the coefficient a will be correspondingly
altered. This restriction is far less severe than
the first, for if the region of applicability of
equation (32) is restricted to time such that
ShiShss < 2, H(0) will be no more than twice
its steady-state value. The limitation to long
times is required for the first restriction as well,
since, as 1 — oo, the time rate of change of the
Sherwood number [or H(0)] approaches zero.

In sum, the following assumptions will be
made. The axial velocity obtained from a
complete solution of the coupled unsteady-state
equations of species conservation and motion
can be expressed in terms of a power series in
¢, of which equation (32) represents the first
two terms. By analogy to the steady-state
solution, all terms involving powers of £ greater
than 2 are negligible at large Schmidt numbers.
The coeflicient « is in general a function both of
time and of the magnitude of the interfacial
velocity. At large times, or Sh/Shss— I, the
effect of H(0) upon o disappears because of
the small magnitude of the interfacial velocity,
and the dependence on time is removed because
of the slow rate of change of H(0) with time.
This last assumption implies quasi-steady-state
hydrodynamics and true unsteady-state diffusion.
It might be regarded as a “pipe-flow” assump-
tion, since it implies that any change in the
velocity of an incompressible fluid at the inlet
{(the disk surface) is immediately felt throughout
the pipe (the diffusion boundary layer).

Inserting equations (25) and (32) into equa-
tion (1) and using equations (20) and (22), the
diffusion equation valid for large Schmidt
numbers at long times becomes

o8 & - of o8
ot T ‘”('a:;; o T ey, Tery

This relation reduces to equation (27) for
short times when the depth of penetration is so

(33)
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small that the first term in the brackets over-
shadows the recond. However, this does not
imply that equation (33) is applicable at inter-
mediate times, because of the restrictions dis-
cussed above. Plots of the solutions of equation
(33) for e, = —0:6, 06 and O are shown in
Fig. 8, along with the short-time diffusion
approximation, equation (30). For e =0,
equation (33) reduces to equation (21), which is
valid at all times for high Schmidt numbers.
The solution of equation (33) for ¢ = +06
has been limited to Sh/Shse > 1:25, because of
its restricted applicability to long times. The
e, = —0-6 curve is practically coincidental with
the no-mass-transfer results. By comparison
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of the short- and long-time approximations, it
appears reasonable that the transient behavior
for e # 0 could be sketched roughly parallel to
the e, = O curve without serious error. The most
striking result of these curves is the relatively
insignificant effect of the interfacial velocity
on the transient behavior of the system. The
times required to approach 5 per cent of steady
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state are within 4 per cent of each other for
—0:6 < e, < 0-6. Although no long-time ap-
proximation for the low Sc region has been
obtained, the diffusion model curves for €, # 0
are still quite close to the heat conduction
analog (e = 0). For practical purposes, it can
be tentatively concluded that the mass-transfer-
induced interfacial velocity has a negligible
effect on the transient response, and that the
simple heat-transfer results are applicable
to all but very high flux (large «,) mass-transfer
processes.

It should be noted that the curves of Fig.
8 are not restricted to a rotating-disk geometry.
At large Schmidt numbers, equation (30)
[and in particular the function f(ey)] applies to
a flat plate [13] and probably to other geometries
as well. It has also been shown that equation
(32) is valid for a wide class of laminar flows
[10]. Only the magnitude of the coefficient «
differs with geometry, and since this parameter is
removed by the transformation of equation (20),
the validity of the solution of equation
(33) is not restricted to the rotating-disk system.

CONCLUSIONS

Transient heat- and mass-transfer phenomena
can be reasonably well predicted by the use of a
number of simplified forms of the axial velocity
profile, each applicable to a certain Schmidt
or Prandtl number and time range. The most
significant fact to be drawn from the computa-
tions is the rapidity with which the steady state
is approached for most systems. For a disk
rotating at 100 s~! in air, for example, the heat-
or mass-transfer rate is within 5 per cent of its
steady-state value after 5 ms. Even for a disk
rotating at 10 s~ in a medium of Schmidt or
Prandtl number of 5000, the 5 per cent approach
is attained after 2-3 s. For a disk rotating at
10 s~1 in a liquid metal of Pr = 0-01, however,
over } min is required before the heat-transfer
rate is within 5 per cent of its steady value.
All of the above calculations assume the instan-
taneous application of the new temperature or
composition to the disk at zero time. Since this
is not practically possible, the computed
approaches to the steady state will be somewhat
more rapid than the behavior of real systems.
Before the transient heat or mass transfer has
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begun, the flow has been assumed at its steady-
state condition; the combination of transient
heat or mass transfer and flow has not been
considered. Approximate considerations of the
interfacial velocity peculiar to mass transfer
suggest that for large Schmidt numbers this
effect does not markedly alter the direct applica-
tion of the heat-transfer results to mass-transfer
situations.
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Résumé—Les transports de chaleur et de masse ont été étudiés en régime transitoire pour des ensembles
variés de disques en rotation dans des fluides en mouvement. L’étude suppose I'écoulement stationnaire
et I'application instantanée d’une température ou d’une variation de composition sur le disque au temps
zéro. On a étudié comment les paramétres sans dimensions de transport de chaleur et de masse, les
nombres de Nusselt ou de Sherwood, tendent vers les valeurs qu’ils prennent en régime permanent.
Pour les calculs numériques dans le cas d’un disque en rotation simple on a utilisé a la fois le profil des
vitesses vrai et quelques formes limites applicables a des domaines limités du nombre de Prandtl ou de
Schmidt et limités dans le temps. Les résultats montrent que, en pratique, ’échange en régime permanent
est atteint presqu’instantanément en appliquant la nouvelle condition aux limites. Pour S¢ — oo,
l’effet de la vitesse & I'interface sur la réponse transitoire est faible.

Zusammenfassung—Fiir verschiedene Kombinationen aus rotierender Scheibe und umlaufender
Fliissigkeit wurde das instationire Wirme- und Stoffiibergangsverhalten untersucht. Die Analyse
verlangt gleichmissige Stromung und Anderung der Temperatur oder der Stoffzusammensetzung an
der Scheibe zur Zeit Null. Die Anndherung der dimensionslosen Wirme- und Stoffiibergangsparameter,
der Nusselt- und Sherwood-Zahl an ihre Werte im stationdren Fall wurde versucht. Die numerischen
Berechnung fiir die rotierende Scheibe allein, stiitzten sich sowohl auf das wirkliche Geschwindigkeits-
profil als auch auf einige Grenzformen, wie sie auf Teilbereiche der Schmidt- und Prandtl-Zahl und
der Zeit anwendbar sind. Die Ergebnisse zeigen, dass fiir praktische Anwendungen der stationdre
Ubergang im wesentlichen sofort nach Einsetzen der neuen Grenzbedingungen erhalten wird. Fiir
Sc — oo erweist sich der Einfluss einer Zwischenflichengeschwindigkeit auf das instationire Verhalten
als klein.

AnnoTanua—llccie0Ban Ipomece TeINIo- MacCooOMeHa IpU PpAasiIMYHBIX KOMOUHAUAX
CHUCTeMbl «BPAIAIOMUIICH AUCK-BPAINAOIIAACA HHUAKOCTH, B aHajuse Npennonaraercs, 4ro
MOTOK CTAMMOHAPHLIA, a MTHOBEHHEIe MSMEHEHMA TeMIIEPaTyPHl M COCTaBa FHUIAKOCTH HA
AUCKe TPOMCXONAT B HAYAJbHLIE MOMEHT BpeMmeHu. Paccmarpupaercs mpubnumenue Ges-
pa3sMepHHIX NAPAMETPOB MepeHoca Temna m Maccel (kpurepun lllepsyna nam HyccemsTa) Kk
WX 3HAYEHHUAM IpH CTALMOHAPHOM Iporecce. B UMCIEHHHX PACUETaX HCHONB3YIOTCH KaK
NCTHHHEM TPOQUIL CKOPOCTH, TAK M €r0 4acTHele (OPMBI, IPUTOAHEIE K ONPEAEJIeHHRIM
obnacram wpurtepus IImumra mom IIpanATAA M TpOMEMRyTHAM BpeMeHH. PeaysbTaTel mo-
KA3BBAIOT, UTO CTAI{MOHAPHHIA TEPEHOC YCTAHABIMBAETCA NPAKTHIECKM CPasy e IOoCie
N3MeHeHNs TPAHNYHOro yciaoBuA. IIpu S¢ —- 0 Ha MOBEPXHOCTU Pasiiedia BIMAHNE CKOPOCTH
HA XAPAKTEPNUCTUKY MEePEXOXHOIO PeKNMa He3HAYHTEbHO.



