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Abstract-The transient heat- and mass-transfer behavior of various rotating-disk-revolving-fluid 
combinations has been investigated. The analysis assumes steady flow and instantaneous application 
of a temperature or composition change at the disk at zero time. The approach of the dimensionless 
heat- or mass-transfer parameters, the Sherwood or Nusselt numbers, to their steady-state values has 
been investigated. The numerical computations for the pure rotating-disk case utilized both the true 
velocity profile and some limiting forms applicable to restricted regions of the Schmidt or Prandtl 
number and time. The results indicate that, for practical purposes, steady-state transfer is essentially 
instantaneously attained upon application of the new boundary condition. For SC + to, the effect of 

interfacial velocity on the transient response is small. 

NOMENCLATURE ‘x, distance along a flat plate, cm; 

B, 

.f (fd.), 

J’(5), 

Nu, 
Pr, 
S, 

s, 
SC, 
Sk 
T, 
T,, T,, T3, T4, 

t, 
u, 

w, 

constant describing the linear 
portion of the axial velocity 
profile, 
ratio of the steady-state Sher- 
wood number to that for cV = 0, 
equation (29); 
dimensionless velocity para- 
meter for flat-plate flow; 
defined by equation (28); 
dimensionless axial velocity, 
equation (3); 
Nusselt number; 
Prandtl number; 
ratio of the mass flux of the 
second component to that of 
the diffusing species, at the 
solid surface; 
dummy variable of integration; 
Schmidt number ; 
Sherwood number; 
temperature, degC ; 
dimensionless time variables, 
equations (S), (1 I), (15) and (22) ; 
time, s; 

W, 

main stream velocity in flat- 
plate flow, cm/s; 
mass fraction of diffusing solute; 
axial velocity, cm/s ; 

X?, x3, x4, dimensionless distance variable, 
equations (9), (13) and (20) ; 

2, axial distance from disk, cm. 

Greek symbols 
a, coefficient of parabolic term of 

power series expansion of H(t) 
about 5 = 0 equal to 0.5102 ; 

% interfacial velocity parameter ; 

0, dimensionless mass fraction, 
(W - W,)/(W,, - W,) or di- 
mensionless temperature, 
(T - T,)/(To - T,); 

5, dimensionless axial distance, 
equation (2); 

w7 angular velocity, rad/s ; 

V, kinematic viscosity of fluid, 
cm2js. 

Suffixes 
0, at the disk, e = 0; 
a, at large distance from the disk, 

5- a; 
ss, steady-state value, t + co ; 
* , for cy = 0. 

INTRODUCTION 

THE nature of the steady flows produced by a 
disk rotating in an infinite body of fluid revolving 
at a different angular velocity from the disk 
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has recently been the subject of numerous inves- 
tigations [l-3]. The heat-transfer problem 
associated with the pure rotating-disk system 
(stationary fluid) has been solved for all Prandtl 
numbers by Millsaps and Pohlhausen [4], and 
Sparrow and Gregg [5]. The latter authors have 
also investigated, by a perturbation method, the 
flow about an unsteadily rotating disk [6]. 

The purpose of this work is to present solu- 
tions of the unsteady-state energy or diffusion 
equations for the combined rotating-disk- 
revolving-fluid system. The fluid is assumed to 
have attained a steady flow situation and, at 
zero time, a unit change in temperature or com- 
position is applied to the disk. 

Cess and Sparrow [7] have investigated the 
rotating-disk system by means of an approxi- 
mate solution to the energy equation. Although 
their technique gives an accurate closed-form 
expression for the transient behavior of the 
system, it is limited to Prandtl numbers between 
-1 and 100 and requires numerical evaluation 
of two integrals for each Prandtl number. I’n 
this paper, the regions of very high and low 
Prandtl numbers will be investigated, and several 
explicit forms of the transient solutions will be 
examined. The difference between the heat- 
and mass-transfer processes will also be con- 
sidered. 

HEAT TRANSFER AND ZERO-DRIVING- 
FORCE MASS TRANSFER 

For heat-transfer situations in which the 
viscous dissipation term is negligible and for 
mass transfer in which the mass flux is small 
enough to neglect the interfacial velocity term, 
the constant-property, unsteady-state energy or 
species conservation equation takes the form 

This relation is written for heat transfer, but 
replacement of the Prandtl number by the 
Schmidt number converts it to the diffusion 
equation. The dimensionless velocity and axial 
distance are defined by 

The boundary conditions are 

e[(, O] = 0; O[O. (w,,f)l = 1 (4) 
0[c0. (w&l = 0. 

Solutions of equation (1), expressed as the 
variation of the gradient at the disk with time. 
have been obtained. Since heat- or mass-transfer 
coefficients are proportional to the gradient at 
the disk, the dimensionless group involving 
these coefficients, i.e. the Nusselt and Sherwood 
numbers, will be utilized 

(5) 

The right-hand side of equation (5) refers either 
to the Nusselt or Sherwood number but, for 
consistency, the Nusselt number will be em- 
ployed. The results will be presented in the form 
of the ratio of the Nusselt number at a dimen- 
sionless time w,t to that at steady state. 

When the fluid above the disk is itself in 
rotational motion, one boundary condition on 
the equations of motion is altered, and new 
velocity profiles must be computed for each 
value of the ratio wJB~. If the fluid at infinity 
is rotating at a greater speed than the disk, it is 
convenient to base the dimensionless transfor- 
mations upon the fluid rotation rate rather than 
that of the disk. In this case, w,, in equations 
(l-3) is replaced by wn2 and the dimensionless 
time is UJ~~. For a disk rotating in a stationary 
fluid, QJ,,/% cc; and for a fluid revolving 
over a stationary disk, w,,/w, : 0. Axial 
velocity profiles for these limiting situations 
have been tabulated by Schlichting [S], while 
those for intermediate values of the parameter 
wO/wn, are available from the work of Rogers 
and Lance [3].+ 

STEADY-STATE SOLUTION 

With the right-hand side of equation (I) 
equal to zero, and the boundary conditions 
0(O) =: I, e(m) = 0, the solution for steady- 
state transfer can be written as 

t The profiles need not be tabulated as H(t) vs. 5. 
Five constants characteristic of the flow suffice to generate 
an asymptotic power series from 5 = 0 to a chosen 
match point, beyond which H(t) is represented by an 
exponential series [l-3]. 
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Nuss = [J;P exp (Pu Jf H(s) dsf d&l. (6) 

Sparrow and Gregg [5] have obtained exact 
numerical solutions of equation (6) for wa, = 0 
and a large range of Prandtl (or Schmidt) 
numbers. A significant characteristic of rotating- 
disk-revolving-fluid flows is the approach of 
H(5) to a constant value at large distances from 
the disk. The form of equation (6) requires that 
H(co) < 0; otherwise, the integral increases 
without bound. Since the sign of H(co) changes 
from negative to positive as wO/w, decreases 
below unity, we can conclude that the steady- 
state solution is zero when the fluid is rotating 
more rapidly than the disk. 

In this respect the system is similar to con- 
duction into a motionless medium, for which a 
steady state of zero is approached. When the 
fluid motion is directed away from the source, 
mass or energy is convected further and further 
into the medium as time progresses; this con- 
tinually reduces the magnitude of the gradient 
(and hence the flux) at the surface towards 
zero. When the fluid moves toward the source, 
the continuous introduction of fresh material 
into the region close to the surface permits a 
potential gradient at the source surface to be 
maintained; hence a non-zero flux will persist 
after the transient period has died away. 

UNSTEADY-STATE SOLUTIONS 

Numerical solutions of equation (I) have 
been obtained by the method of finite differences, 
utilizing tabulated values or the equivalent 
series representations of the axial velocity 
profile. 

For the rotating disk (urn = 0), certain !imi- 
ting cases of time and Pr permit simplifications 
in equation (1) which allow either analytical 
solution or a transformation which removes the 
explicit dependence on the Schmidt number. 

Case I-Very small limes, all Pr 
After the temperature or composition of the 

disk has been suddenly altered, there will follow 
a period of time during which the depth of 
penetration into the fluid is so small that the 
axial velocity can be considered zero. The 
heat- or mass-transfer rate will follow the time 
dependence characteristic of conduction into a 

2N 

stagnant medium. With I#)>- 0: the solution 
of equation (1) can be written as 

Nu I _ = __ 
Nuss Nuss (7) 

where 

Tl = m$! 

Nuss is computed by equation (6) using the 
actual velocity profile. 

Case H-Large times, small Pr (<O-l) 
In this case, the steady-state diffusion or 

thermal boundary layer is considerably greater 
than the hydrodynamic boundary layer [5]. 
For times sufficiently large such that the tem- 
perature or concentration profile is reasonably 
ciose to its steady-state value, 

H(5) N H(oo) = -0*886, 

and with 

xg = -Pr N(ci3)f 

equation (1) becomes 
p, c 

g+;,==;; 
‘2 

where 
Tz = Pr[H(co)]2q,t. 

The solution of equation (10) is [9] 

(9) 

00) 

(11) 

Case III-Large times, Pr 2! 1 
For these Prandtl numbers, a significant 

portion of the concentration or temperature 
change falls in the region 0 & .$ < 2, within 
which H(t) is approximately linear with axial 
distance (see Fig. 2 of [SJ). Taking H(t) N -Bl, 
and making the dimensionless transformation 

(13) 

equation (1) can be written as 
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where 

T3 = &Bw,t. (15) 

The solution of equation (14), subject to 
boundary conditions equivalent to equation (4), 
is 

Nut = [l _ e-4T3]-t. 
NUSS 06) 

To estimate the reliability of the linear- 
velocity assumption, the steady-state solution 
of equation (14) was first obtained as 

de 

f j 

2 _ =_-_~ 
I dx, o v’n’ 

(17) 

Using equation (13) 

with B approximately equal to O-25, equation 
(18) becomes7 

NM,, = 0.40 z/Pr. (19) 

A comparison of the exact computation [5] and 
that predicted by equation (19) shows the latter 
to be 1 per cent high at Pr = 1 and 11 per cent 
high at Pr = 10. Although equation (19) is not 
useful as a method of accurately predicting 
NusI, this agreement indicates that the linear- 
velocity profile is a reasonable assumption for 
Pr _rr: 1. However, equation (16) shows that 
since T3 is not a function of the Prandtl number, 
neither is the ratio Nu/Nuss. 

Case IV-All times, high Pr (> 100) 
For large Prandtl numbers, the thermal- 

boundary layer is always in the region in which 
H(t) 11 - af2, where a = - iHI’ [5]. With 
this velocity profile and the transformation 

aPr lJ3 
x4= -- c ! 3 

5 

equation (1) becomes 

?$ + 3x1;; = $. (21) 
4 4 4 

t The straight line has been drawn through the origin 
of Fig. 2, Ref. [5]. 

where 

T4 = (cc/~)~!~ Pr-l;” w,,t. (22) 

Numerical solution of equation (21) permits 
prediction of the time-dependent heat- or mass- 
transfer behavior for all Pr > 100. 

Solutions of this type are more useful in mass 
rather than heat transfer, since the restriction 
SC > 100 includes practically all binary liquids. 
It should be noted that the technique of Cess 
and Sparrow [7] is not applicable to large 
Schmidt or Prandtl numbers. They have utilized 
a modified Laplace transform of equation (1) 
and obtained solutions for large and small 
values of the transform variable. The series 
approximation for large times (small values of 
the transform variable) retains only two terms, 
and the success of this method for Prandtl 
numbers between 1 and 100 is due to the low 
ratio of the coefficients of the second and first 
terms-see equation (13) and Table 1 of [7]. 
The reason for the failure at low Prandtl 
numbers is the large value of this ratio. It can 
be shown that at large Prandtl numbers the 
ratio is proportional to the Prandtl number; 
hence the method is inapplicable in this region 
as well. Application of their technique to equa- 
tion (21) yields an imaginary value of one of the 
coefficients (as in their nomenclature). 

Plots of Nu/Nuss vs. time for Cases I, II and IV 
will be separated according to Prandtl number, 
as can be seen by the appearance of this para- 
meter in the dimensionless times defined by 
equations (8), (11) and (22). Equation (15) 
indicates that only for Case III will the Sher- 
wood or Nusselt ratio be independent of SC or 
Pr. 

RESULTS 

Rotating-disk flow (w, = 0) 
The solid lines of Figs. 1 and 2 show the 

approach to steady state transfer from a 
rotating disk. The curves for Pr = 0.01, 0.1, 1, 
10 and 100 were computed using the actual 
axial velocity profile [2, 81; for Pr == 1000, 
the parabolic approximation to the velocity 
profile was used, i.e. this curve represents a 
solution of equation (21) with T4 converted to 
w,t by equation (22). 

The curves of Fig. 1 shows that for low Prandtl 
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FIG. 1. Transient heat transfer from a rotating disk for Pr = 0.1 and 0.01. 
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FIG. 2. Transient heat transfer from a rotating disk for 
Pr = 1, 10, 100 and 1000. 

numbers the constant velocity model [equation (7) and (12) reproduce the numerical solution to 
(12)] is an excellent approximation of the actual within &4 per cent at all times. 
transient behavior for all but very small times. The numerical solutions for Pr = 1, 10 and 
In the region where equation (12) begins to 100 (Fig. 2) are in excellent agreement with the 
diverge from the true curve, the conduction closed-form solution of Cess and Sparrow [7]. 
model takes its place as a satisfactory approxi- The conduction model follows the true curve 
mation. With appropriate matching, equations until quite close to steady state, or for Nu/Nuss 
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between 2 and 3. At w,,t > 2, the curves for 
J-V == 1 and 10 coincide, indicating that the 
restrictions of Case III are fulfilled. The solid 
curve for Pr = 1 is predicted by equations (15) 
and (16) to within O-5 per cent. 

For practical purposes, a more significant 
measure of transient behavior is the time re- 
quired to reach a certain percentage of steady 
state. Fig. 3 shows the wOt values requiFed for 
NuIN~I,, to reach 1.5 and f 45 as functions of Pr. 

NUMERICAL SOLUTIONS 

-I- CONSTANT VELOCITY MODEL 

Pr 

FIG. 3. Time required for various fractionai approaches 
to steady-state, rotating disk. 

The asymptotic lines for high and low Prandtl 
numbers have been obtained from equation (12) 
and the solution of equation (21). The flat 
minima between Prandtl numbers of 1 and 10 
indicate the qualitative validity of Case III, which 
predicts that the time required to approach a 
given percentage of steady state should be 
independent of Prandtl number as long as the 
velocity profile in the region where the greatest 
part of the temperature or concentration change 
occurs is effectively linear. The true minimum 
is in the neighborhood of Pr = 3; the transient 
curve for this Prandtl number falls slightly 
below the Pu = 1 curve of Fig. 2 at wOt > 2. 

This peculiar behavior of the transient 
response time has been noted by Cess and 
Sparrow [7] and is due to the particular form of 

the axial-velocity distribution characteristic of 
rotating-disk flows. The minimum can be thought 
of as the result of two competing effects: Large 
thermal or mass diffusivities (or low SC or PI) 
tend to give a quick approach to steady state; 
strong fluid motion in a direction opposite to the 
heat or mass flux tends to restrict the speed of 
approach to steady state. This latter effect 
results from the fact that heat or mass diffuse 
relative to the mass average velocity of the fluid. 
Just as a fish moves more slowly upstream 
against a swift current, the rate of heat or mass 
transport as seen by a stationary observer is 
proportional to the difference between the 
diffusional velocity (which is a function of the 
difftlsivity-gradient product) and the (negative) 
convective velocity. At low Prandtl numbers, 
the thermal boundary layer at steady state 
extends quite deeply into the region far from the 
disk where the axial inflow is strongest. This 
convective restriction to rapid attainment of 
steady state more than overcomes the high 
diffusiv~ty characteristic of low-Frandtl-number 
fluids, so that the net result is a sluggish approach 
to steady state. At high Prandtl numbers. the 
situation is just reversed; the velocity experienced 
by the diffusing heat or mass is quite small since 
the process occurs in a region close to the solid 
surface. However, the very low diffusivity 
predominates and the approach to steady state 
is slow. For intermediate Prandtl numbers. the 
diffusivities are sufficiently large and the hydro- 
dynamic inflow sufficiently small in the thermal 
or diffusion boundary layer such that the rate 
of approach to steady state is more rapid than 
for the other two cases. 

The minima of Fig. 3 should be observed for 
any flow system in which the axial velocity 
[or more precisely, the equivalent of H(S) in 
equation (I)] approaches a constant negative 
value at large distances from the solid surface. 
This conditions insures that as Pr+ 0, equation 
(12) will be valid, and the response time will 
decrease as Pr-I, as the left-hand asymptotes 
of Fig. 3 indicate. As Pr-r ~3, the velocity 
parallel to the solid surface in the thermal or 
diffusion boundary layer will eventually become 
linear in normal distance [this condition gives 
rise to the parabolic form of the coe~~ient of 
i8/%x, in equation (21)] [lo]. When this occurs, 



UNSTEADY-STATE HEAT 

the right-hand asymptote of Fig. 3 will describe 
the transient behavior, and the time of the 
approach to steady state will increase as the cube 
root of the Prandtl number. What lies between, 
then, must be a minimum. 

As an example of a system which contains no 
minimum in response curves similar to Fig. 3, 
consider the transient response of heat transfer 
from a flat plate to a step change in plate tem- 
perature. The time-dependent energy equation 
is given by equation (1) with H(5) replaced 
by - $J’([) and wOt replaced by t/(x/U). The 
derivative of the function J’(t) represents the 
ratio of the parallel velocity component to the 
main stream velocity (U), and t is the dimension- 
less distance commonly employed in flat-plate 
analysis.? For low Prandtl numbers, the thermal 
boundary layer is much larger than the flow 
boundary layer, andf([) can be replaced by its 
asymptotic form for large distances. Thus 
f(ll = 6 i- K. where K js a constant. If xi is i \-, 
defined is ‘&diPr) (5 + K) and T3 as 
the flat-plate energy equation reduces 
tion (14). The steady-state solution is: 

lim Nus, = 
PF+O 

(23) 

which is too high by 3 per cent at Pr = 0.001, 
8 per cent at Pr = 0.01 and 22 per cent at 
Pr = 0.1 [ll]. The unsteady-state solution is: 

t/4(x/-n 
to equa- 

;::. ‘gs = { 1 - exp [- t/(x/U)] }-lj2. (24) 
( 1 

At large Schmidt numbers, f(t) + 2ut2, 
where a = 0.083 [lo]. The energy equation thus 
reduces to equation (21). 

Knowledge of these two limiting cases permits 
construction of asymptotic response curves 
similar to those of Fig. 3; these are shown on 
Fig. 4 for the flat-plate geometry. Rather than 
passing through a minimum, the transient 
curves approach a constant value as Pr+ 0, 
which is obtainable from equation (24). Since 
the range of validity of the unsteady-state 
asymptotic forms roughly corresponds to the 
applicability of their steady-state counterparts, 
the right-hand asymptotes of Fig. 4 should be 
fairly reliable down to Pr 2: 1, while the low- 

7 For the flat plate, 5 = y[ll/~x]~/~, where y is distance 
normal to the surface. 
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- - PARABOLIC VELOCITY MODEL 
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Pr 

FIG. 4. Time required for various fractional approaches 
to steady-state, flat plate. 

Prandtl-number form is probably in consider- 
able error for Pr > O-01. 

Rotating disk-revolvingjluid 
Solutions of the energy equation for the case 

of a non-zero rotational velocity of the fluid 
above the disk were obtained by numerical 
solution of equation (1) and the appropriate 
tabulated values of H(5) for each w,/w,. 

Figure 5 shows the transient behavior of the 
Nusselt number for PI- = 1 and w,/wa, = 5.54 
and 2.9 1. In the former case, the curve is identical 
with that for a pure rotating disk, which indi- 
cates that the ratio 5.54 is essentially infinite as 
far as the velocity profiles are concerned. 
Fig. 6 presents the time-dependent behavior of 
systems in which the bulk fluid is rotating more 
rapidly than the disk. For these systems, as 
indicated above, the Nusselt number approaches 
zero at large times. For w,Jw,, = O-032 (which 
closely represents the rotational motion of a 
large body of fluid over a stationary surface) 
and a fluid rotational rate of 10 s-l, the Nusselt 
number is 0.03 after 4 s. By comparison, the 
Nusselt number for a disk rotating at 10 s-l in a 
stationary fluid is 0.41 after $ s. 

Figures 5 and 6 indicate that, as w,,/woo 
approaches unity, the transient response be- 
comes slower. This is due to the increasing size 
of the hydrodynamic and thermal boundary 
layers as the state of solid rotation is approached. 
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FIG. 5. Transient heat transfer of rotating-disk-revolving- 
fluid combination, q/w, > 1, Pr = I. 

At w,Jwco = 1, there is no gross fluid motion, 
and the system is one of pure conduction or 
diffusion, for which the “boundary layers” are 
infinite in extent. Any convective contribution 
to energy or material transport, whether it be 
flow toward the disk (wO/woo > 1) or outflow 
(w,,/w~ < l), results in a more rapid response 
than that of pure conduction or diffusion. 

FIG. 6. Transient heat transfer behavior of rotating- 
disk-revolving-fluid combination, w~/w, < 1, Pr = 1. 

Unsteady-state mass transfer at high rates 
The preceding development of the transient 

behavior of the rotating-disk system is appli- 
cable only to those mass-transfer situations in 
which the driving force or the mass flux is small. 
If this is not so, the axial velocity at the disk 
surface generated by the mass-transfer process 
cannot be neglected, and its effect on boundary 

conditions of the equations of motion must be 
considered. An exact solution represents a 
formidable problem, for not only are three 
non-linear, time-dependent, hydrodynamic equa- 
tions coupled to equation (l), but the axial 
velocity boundary condition at the disk, H(O), is 
non-zero and varies with time as well. In order 
to estimate the effect of the interfacial velocity 
upon the transient behavior which has been 
developed for heat transfer and zero-driving- 
force mass transfer, two limiting cases will be 
considered : (1) a short-time approximation 
equivalent to the pure conduction model con- 
sidered previously and valid for all Schmidt 
numbers, and (2) a long-time approximation for 
high Schmidt numbers. 

Immediately following a step change in 
concentration at the disk, the mass-transfer 
process resembles that of pure diffusion into a 
motionless medium. The only convective motion 
in the fluid is that resulting from the movement 
of the diffusing species itself and can be related 
to the gradient at the disk by [IO]: 

(25) 

where 

wo - w, 
Ev = [f/(1 + S)] - w0 (26) 

and S represents the ratio of the mass fluxes of 
the second component to that of the diffusing 
species. If the second component is not trans- 
ferred across the disk surface, S = 0, and 
equation (26) represents the “stagnant B” 
condition commonly encountered in mass- 
transfer analyses. Equations (25) and (26) 
arise directly from the definition of a Maxwell- 
Stephan or Chapman-Cowling type diffusion 
coefficient [lo]. In the following analysis, the 
properties of the mixture (e.g. viscosity, density 
and diffusivity) will be assumed independent of 
composition. The effect of variable properties 
on the steady-state transfer is not large, at least 
for high Schmidt number systems [lo]. 

With the hydrodynamic velocity approximated 
by equation (25) for short times, equation (1) 
becomes 

(27) 
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Following the development of Bird et al. [12], 
the solution to equation (27) can be written as 

g( cv) = Sh d(&‘-l) = exp ‘- E,2sh2T1 ’ 
1 + erf {&3hdTl} (2*) 

where Sh represents the gradient at the disk 
[the right-hand side of equation (5)] and T1 is 
given by equation (8).j’ As cl) -+ 0, g(+) 
approaches unity, and equation (28) reduces to 
equation (7). The solution of equation (28) is 
presented on Fig. 7 as the g(c,) vs. G curve. 
Equation (28) indicates that the effect of inter- 
facial velocity on the short-time transient 
behavior is simply a displacement of the con- 
duction-type curves by the factor g(e*). How- 
ever, in order to express the results as the ratio 

1.7 

I.6 

I.5 

I.4 

<J.3 
d 

3.2 
< 

1.1 

I.0 

09 

0.8 

07 
-0.8 -06 -0.4 -0.2 0 02 0.4 06 0.8 

Ev 
FIG. 7. The effect of interfacial velocity on the diffusion 

model for transient mass transfer. 

ShlSh,,, the effect of cv on the steady-state 
Sherwood number must also be considered. 
This effect has been investigated elsewhere [13], 
and the results can be represented by 

i For the following dicusssion, iVu and Pr in equations 
(S-8) are replaced by Sh and SC. 

(29) 

where Sh,T denotes the steady-state Sherwood 
number in the absence of interfacial velocity 
and is equal to the steady-state NusseIt number 
which has been used in the preceding section. 
The functionf( Et,) can be obtained from a cross 
plot of the curves of the figure in [13]. In 
general, f (Ed) is a function of Schmidt number, 
but this dependency ceases for SC > 10. Com- 
bining equations (28) and (29), the exact mass- 
transfer analog of equation (7) can be written as 

This relation is applicable to all Schmidt 
numbers, and its range of validity will probably 
be close to that of equation (7) i.e., until 
Sh/Shss is between 2 and 3. Except for large 
Schmidt numbers, f(+) must be evaluated at 
the particular Schmidt number in question. For 
all Schmidt numbers, however, the ratio 
g( cv)/f( EV) differs surprisingly little from unity. 
For SC = 1, for example, it is 1.13 at Ed = -0.6 
and 0.93 at c2) = +0%&f For SC >lO, the effect 
is even less pronounced. The function .f(+,) 
and the ratio g( cV)/f( eV) are shown in Fig. 7 for 
SC > 10. The ratio g(fV)/f(Elj) varies from 
1.07 at ev = -0.6 to 0.96 for cV = 06. 

For large Schmidt numbers, it is convenient 
to recast equation (30) into the time variable 
T4 of equation (22). With the parabolic velocity 
profile assumption, Shz can be obtained 
directly from equation (6) as (~Sc~3)~‘~~~(4~3) 
and equation (30) written as 

Here r(4/3) denotes the gamma-function of 413. 
At large Schmidt numbers, the steady-state 

Sherwood number can be accurately approxi- 
mated by use of a velocity profile which is the 
sum of two contributions: the mass transfer 
induced interfacial velocity and the parabolic 

~.- 
: For a stagnant second component (S = O), 

cll = -0% represents a solute whose mass fraction is 
06 in the bulk and zero at the disk. G* = 0.6 charac- 
terizes a solute with a mass fraction of 0.375 at the disk 
and zero in the bulk. 
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term representing the velocity distribution with- 
in the diffusion boundary layer in the no-mass- 
transfer system [13]. Thus, as SC -+ ai\, 

H(S) N H(0) - aS’“. (32) 

This approximation is satisfactory for steady- 
state transfer because the interfacial velocity 
becomes increasingly smaller as the Schmidt 
number increases,? In the limit as SC+ co, 
the radial shear stress at the disk [which is 
proportional to a in equation (32)] is no longer 
affected by the mass-transfer process, and the 
velocity distribution is simply a translation of 
the no-mass-transfer profile by an amount H(0). 

In the transient case, however, two additional 
limitations arise: 

(1) Equation (32) applies to a steady-state 
situation. In the transient case, the coefficient a 
would in general be a function of time, and 
higher-order terms may be signi~cant. However, 
on physical grounds it can be argued that if the 
boundary condition H(0) is a slowly varying 
function of time, the velocity distribution can 
be assumed to pass through a series of instan- 
taneous quasi-steady states, each represented 
by equation (32). In this case, a would retain 
its no-mass-transfer value of 0.51 and the entire 
time variation of the axial velocity would be 
contained in the H(0) term. There is some 
justification for the assumption from the study 
of Sparrow and Gregg [6], which was concerned 
with the deviation of the instantaneous torque 
on a rotating disk during start-up from its 
quasi-steady-state value. Deviations were ex- 
pressed as a power series involving the time 
rate of change of the angular speed of the disk 
and its derivative. The slower the rate of change 
of disk speed, the better is the quasi-steady- 
state assumption. In an illustrative example, they 
showed that, for a reasonable approach of 
the rotational speed to its steady-state value, the 
quasi-steady approximation was valid by the 
time the disk had attained but 10 per cent of its 
steady-state rotational rate. The situation here 
is different in that the axial velocity boundary 
condition, rather than the tangential component, 
is time dependent. In addition, the time varia- 

tion of H(0) is not a priori specifiable, for it is 

embedded in the transient diffusion equation. 
(2) Since II(O) is determined by the magnitude 

of the composition gradient at the disk surface, 
equation (32) would apply only when the Sher- 
wood number is close to its steady-state value. 
Otherwise, the interfacial velocity will be large 
enough to affect the shear stress at the disk. 
and the coefficient a will be correspondingly 
altered. This restriction is far less severe than 
the first, for if the region of applicability of 
equation (32) is restricted to time such that 
Sh/Shss < 2, H(0) will be no more than twice 
its steady-state value. The limitation to long 
times is required for the first restriction as well. 
since, as I -+ co, the time rate of change of the 
Sherwood number [or H(O)] approaches zero. 

In sum, the following assumptions will be 
made. The axial velocity obtained from a 
complete solution of the coupled unsteady-state 
equations of species conservation and motion 
can be expressed in terms of a power series in 
E, of which equation (32) represents the first 
two terms. By analogy to the steady-state 
solution, all terms involving powers of 5 greater 
than 2 are negligible at large Schmidt numbers. 
The coefficient u is in general a function both of 
time and of the magnitude of the interfacial 
velocity. At large times, or Sh/Shs,s --f I, the 
effect of N(O) upon a disappears because of 
the small magnitude of the interfacial velocity, 
and the dependence on time is removed because 
of the slow rate of change of H(0) with time. 
This last assumption implies quasi-steady-state 
hydrodynamics and true unsteady-state diffusion. 
It might be regarded as a “pipe-flow” assump- 
tion, since it implies that any change in the 
velocity of an incompressible fluid at the inlet 
(the disk surface) is immediately felt throughout 
the pipe (the diffusion boundary layer). 

Inserting equations (25) and (32) into equa- 
tion (1) and using equations (20) and (22), the 
diffusion equation valid for large Schmidt 
numbers at long times becomes 

t At SC = 1000 and fu = 06, H(0) N 0.0033, com- This relation reduces to equation (27) for 

pared to Ii 1. -0.886. short times when the depth of penetration is so 
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small that the first term in the brackets over- 
shadows the second. However, this does not 
imply that equation (33) is applicable at inter- 
mediate times, because of the restrictions dis- 
cussed above. Plots of the solutions of equation 
(33) for Ed = -0.6, 0.6 and 0 are shown in 
Fig. 8, along with the short-time diffusion 
approximation, equation (30). For cV = 0, 
equation (33) reduces to equation (21) which is 
valid at all times for high Schmidt numbers. 
The solution of equation (33) for cZ, = ~tO.6 
has been limited to Sh/Sh,, > 1.25, because of 
its restricted applicability to long times. The 
Ed, = -0.6 curve is practically coincidental with 
the no-mass-transfer results. By comparison 

06 

0.18 d 
C.16 

0.14 - 

0.12 / \!, 

Ilj -lNUMrALfOLUrS 1 \\ 1 

095 0075 0.1 0.15 0.2 0.3 04 0.5 
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FIG. 8. Transient mass transfer as a function of F~. 

of the short- and long-time approximations, it 
appears reasonable that the transient behavior 
for cZ, i 0 could be sketched roughly parallel to 
the eV = 0 curve without serious error. The most 
striking result of these curves is the relatively 
insignificant effect of the interfacial velocity 
on the transient behavior of the system. The 
times required to approach 5 per cent of steady 

state are within 4 per cent of each other for 
-0.6 < cU < O-6. Although no long-time ap- 
proximation for the low SC region has been 
obtained, the diffusion model curves for cl1 f 0 
are still quite close to the heat conduction 
analog (cU = 0). For practical purposes, it can 
be tentatively concluded that the mass-transfer- 
induced interfacial velocity has a negligible 
effect on the transient response, and that the 
simple heat-transfer results are applicable 
to all but very high flux (large cV) mass-transfer 
processes. 

It should be noted that the curves of Fig. 
8 are not restricted to a rotating-disk geometry. 
At large Schmidt numbers, equation (30) 
[and in particular the functionf(s)] applies to 
a flat plate [ 131 and probably to other geometries 
as well. It has also been shown that equation 
(32) is valid for a wide class of laminar flows 
[lo]. Only the magnitude of the coefficient a 
differs with geometry, and since this parameter is 
removed by the transformation of equation (20), 
the validity of the solution of equation 
(33) is not restricted to the rotating-disk system. 

CONCLUSIONS 

Transient heat- and mass-transfer phenomena 
can be reasonably well predicted by the use of a 
number of simplified forms of the axial velocity 
profile, each applicable to a certain Schmidt 
or Prandtl number and time range. The most 
significant fact to be drawn from the computa- 
tions is the rapidity with which the steady state 
is approached for most systems. For a disk 
rotating at 100 s-l in air, for example, the heat- 
or mass-transfer rate is within 5 per cent of its 
steady-state value after 5 ms. Even for a disk 
rotating at 10 s-l in a medium of Schmidt or 
Prandtl number of 5000, the 5 per cent approach 
is attained after 2.3 s. For a disk rotating at 
10 s-l in a liquid metal of Pr = 0.01, however, 
over ) min is required before the heat-transfer 
rate is within 5 per cent of its steady value. 
All of the above calculations assume the instan- 
taneous application of the new temperature or 
composition to the disk at zero time. Since this 
is not practically possible, the computed 
approaches to the steady state will be somewhat 
more rapid than the behavior of real systems. 
Before the transient heat or mass transfer has 
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begun, the flow has been assumed at its steady- 
state condition; the combination of transient 
heat or mass transfer and flow has not been 
considered. Approximate considerations of the 
interfacial velocity peculiar to mass transfer 
suggest that for large Schmidt numbers this 
effect does not markedly alter the direct applica- 
tion of the heat-transfer results to mass-transfer 
situations. 
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R&urn&-Les transports de chaleur et de masse ont BtB &udiCs en regime transitoire pour des ensembles 
varies de disques en rotation dans des fluides en mouvement. L’btude suppose l%coulement stationnaire 
et l’application instantanee d’une temperature ou d’une variation de composition sur le disque au temps 
z&o. On a &udiC comment les paramttres sans dimensions de transport de chaleur et de masse, les 
nombres de Nusselt ou de Sherwood, tendent vers les valeurs qu’ils prennent en regime permanent. 
Pour les calculs numkriques dans le cas d’un disque en rotation simple on a utilise g la fois le profil des 
vitesses vrai et quelques formes limites applicables & des domaines limit&s du nombre de Prandtl ou de 
Schmidt et limit&s dans le temps. Les r&sultats montrent que, en pratique, l’echange en rCgime permanent 
est atteint presqu’instantankment en appliquant la nouvelle condition aux limites. Pour SC --f a. 

l’effet de la vitesse B l’interface sur la rCponse transitoire est faible. 

Zusammenfassung-Fiir verschiedene Kombinationen aus rotierender Scheibe und umlaufender 
Fliissigkeit wurde das instationlre Wirme- und Stoffiibergangsverhalten untersucht. Die Analyse 
verlangt gleichmlssige Stramung und Anderung der Temperatur oder der Stoffzusammensetzung an 
der Scheibe zur Zeit Null. Die Annlherung der dimensionslosen W&me- und Stoffiibergangsparameter, 
der Nusselt- und Sherwood-Zahl an ihre Werte im stationken Fall wurde versucht. Die numerischen 
Berechnung fiir die rotierende Scheibe allein, stiitzten sich sowohl auf das wirkliche Geschwindigkeits- 
profil als such auf einige Grenzformen, wie sie auf Teilbereiche der Schmidt- und Prandtl-Zahl und 
der Zeit anwendbar sind. Die Ergebnisse zeigen, dass fi,ir praktische Anwendungen der stationare 
ifbergang im wesentlichen sofort nach Einsetzen der neuen Grenzbedingungen erhalten wird. Ftir 
SC -+ co erweist sich der Einfluss einer Zwischenfl%chengeschwindigkeit auf das instationgre Verhalten 

als klein. 

BHIioTarlHJI-BCCJre~OBaII IIpOqeCC TeIIJIO-H MaCCOO6MeHa IIpI4 pa3JIHYHbIX KOM6MHaqMRX 

CmTeim ccspamarorr(niIcR AHcK-spaualomascfl mEAKocTba. B aHanH3e npeAnoJraraeTcn, YTo 
IIOTOK CTaqHOHapHbIti, a MI'HOBeHHbIe Il3MeHeHIlR TeMIIepaTypbI II COCTaBa X(EIAKOCTI4 Ha 

,qHCKe IIPOIICXOAAT B Ha=IaJIbHbIi MOMeHT BpeMeHIf. PaccMaTpasaeTcf? npa6nHmeHae 6ea- 
paaMepHbIx IIapaMeTpOB IIepeHoca TeIIJIa H MaCCbI (KpHTepEIH mepByAa IJJIYI HycCenbTa) Ii 

IIX 3Ha9eHIIRM IIpEi CTa~HOHapHOM IIpOqeCCe. B WICJIeHHbIX paCYi?TaX EICIIOJIb3yIOTCR KaK 

IICTHHH~I~~ IIpO@HJIb CKOpOCTGI, TBK II eF0 YaCTHbIe (POpMbI, IIpIWOAHbIe K OIIpeAeneHHbIM 

06JIaCTfIM KpElTepHFI UIMllATa HJIEl HpaHATJIR PI IIpOMeHFyTKaM BpeMeHI'I. Pe3yJIbTaTbI II+ 

K33bIBaIOT, 9TO CTaI&HOHapHbIti IIepeHOC yCTaH3BJInBaeTCF-I IIpaKTWIeCKGI Cpa3y H(e IIOCJIe 

R3MeHeHIIRIpaHWIHOI'o YCJIOBHR. npll SC + 03 HanOBepXHOCTMpa3~enaBnwIHne CKO~OCTLI 

HaXapaKTepHCTMKy IIepeXOAHOFO peH(EiMaHe3HaWTeJIbHO. 


